Mercurial > genshi > genshi-test
view markup/eval.py @ 68:a1f93d095759
Add GIF variant of the logo, and better compression on the PNG.
author | cmlenz |
---|---|
date | Mon, 10 Jul 2006 09:17:41 +0000 |
parents | 822089ae65ce |
children | e9a3930f8823 |
line wrap: on
line source
# -*- coding: utf-8 -*- # # Copyright (C) 2006 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://markup.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://markup.edgewall.org/log/. """Support for "safe" evaluation of Python expressions.""" from __future__ import division import __builtin__ try: import _ast # Python 2.5 except ImportError: _ast = None import compiler import operator from markup.core import Stream __all__ = ['Expression'] class Expression(object): """Evaluates Python expressions used in templates. >>> data = dict(test='Foo', items=[1, 2, 3], dict={'some': 'thing'}) >>> Expression('test').evaluate(data) 'Foo' >>> Expression('items[0]').evaluate(data) 1 >>> Expression('items[-1]').evaluate(data) 3 >>> Expression('dict["some"]').evaluate(data) 'thing' Similar to e.g. Javascript, expressions in templates can use the dot notation for attribute access to access items in mappings: >>> Expression('dict.some').evaluate(data) 'thing' This also works the other way around: item access can be used to access any object attribute (meaning there's no use for `getattr()` in templates): >>> class MyClass(object): ... myattr = 'Bar' >>> data = dict(mine=MyClass(), key='myattr') >>> Expression('mine.myattr').evaluate(data) 'Bar' >>> Expression('mine["myattr"]').evaluate(data) 'Bar' >>> Expression('mine[key]').evaluate(data) 'Bar' All of the standard Python operators are available to template expressions. Built-in functions such as `len()` are also available in template expressions: >>> data = dict(items=[1, 2, 3]) >>> Expression('len(items)').evaluate(data) 3 """ __slots__ = ['source', 'ast'] __visitors = {} def __init__(self, source): """Create the expression. @param source: the expression as string """ self.source = source self.ast = None def __repr__(self): return '<Expression "%s">' % self.source if _ast is None: def evaluate(self, data): """Evaluate the expression against the given data dictionary. @param data: a mapping containing the data to evaluate against @return: the result of the evaluation """ if not self.ast: self.ast = compiler.parse(self.source, 'eval') return self._visit(self.ast.node, data) # AST traversal def _visit(self, node, data): v = self.__visitors.get(node.__class__) if not v: v = getattr(self, '_visit_%s' % node.__class__.__name__.lower()) self.__visitors[node.__class__] = v return v(node, data) def _visit_expression(self, node, data): for child in node.getChildNodes(): return self._visit(child, data) # Functions & Accessors def _visit_callfunc(self, node, data): func = self._visit(node.node, data) if func is None: return None args = [self._visit(arg, data) for arg in node.args if not isinstance(arg, compiler.ast.Keyword)] kwargs = dict([(arg.name, self._visit(arg.expr, data)) for arg in node.args if isinstance(arg, compiler.ast.Keyword)]) return func(*args, **kwargs) def _visit_getattr(self, node, data): obj = self._visit(node.expr, data) if hasattr(obj, node.attrname): return getattr(obj, node.attrname) try: return obj[node.attrname] except (KeyError, TypeError): return None def _visit_slice(self, node, data): obj = self._visit(node.expr, data) lower = node.lower and self._visit(node.lower, data) or None upper = node.upper and self._visit(node.upper, data) or None return obj[lower:upper] def _visit_subscript(self, node, data): obj = self._visit(node.expr, data) subs = map(lambda sub: self._visit(sub, data), node.subs) if len(subs) == 1: subs = subs[0] try: return obj[subs] except (KeyError, IndexError, TypeError): try: return getattr(obj, subs) except (AttributeError, TypeError): return None # Operators def _visit_and(self, node, data): return reduce(lambda x, y: x and y, [self._visit(n, data) for n in node.nodes]) def _visit_or(self, node, data): return reduce(lambda x, y: x or y, [self._visit(n, data) for n in node.nodes]) def _visit_bitand(self, node, data): return reduce(operator.and_, [self._visit(n, data) for n in node.nodes]) def _visit_bitor(self, node, data): return reduce(operator.or_, [self._visit(n, data) for n in node.nodes]) _OP_MAP = {'==': operator.eq, '!=': operator.ne, '<': operator.lt, '<=': operator.le, '>': operator.gt, '>=': operator.ge, 'is': operator.is_, 'is not': operator.is_not, 'in': lambda x, y: operator.contains(y, x), 'not in': lambda x, y: not operator.contains(y, x)} def _visit_compare(self, node, data): result = self._visit(node.expr, data) ops = node.ops[:] ops.reverse() for op, rval in ops: result = self._OP_MAP[op](result, self._visit(rval, data)) return result def _visit_add(self, node, data): return self._visit(node.left, data) + self._visit(node.right, data) def _visit_div(self, node, data): return self._visit(node.left, data) / self._visit(node.right, data) def _visit_floordiv(self, node, data): return self._visit(node.left, data) // self._visit(node.right, data) def _visit_mod(self, node, data): return self._visit(node.left, data) % self._visit(node.right, data) def _visit_mul(self, node, data): return self._visit(node.left, data) * self._visit(node.right, data) def _visit_power(self, node, data): return self._visit(node.left, data) ** self._visit(node.right, data) def _visit_sub(self, node, data): return self._visit(node.left, data) - self._visit(node.right, data) def _visit_unaryadd(self, node, data): return +self._visit(node.expr, data) def _visit_unarysub(self, node, data): return -self._visit(node.expr, data) def _visit_not(self, node, data): return not self._visit(node.expr, data) def _visit_invert(self, node, data): return ~self._visit(node.expr, data) # Identifiers & Literals def _visit_name(self, node, data): val = data.get(node.name) if val is None: val = getattr(__builtin__, node.name, None) return val def _visit_const(self, node, data): return node.value def _visit_dict(self, node, data): return dict([(self._visit(k, data), self._visit(v, data)) for k, v in node.items]) def _visit_tuple(self, node, data): return tuple([self._visit(n, data) for n in node.nodes]) def _visit_list(self, node, data): return [self._visit(n, data) for n in node.nodes] else: def evaluate(self, data): """Evaluate the expression against the given data dictionary. @param data: a mapping containing the data to evaluate against @return: the result of the evaluation """ if not self.ast: self.ast = compile(self.source, '?', 'eval', 0x400) return self._visit(self.ast, data) # AST traversal def _visit(self, node, data): v = self.__visitors.get(node.__class__) if not v: v = getattr(self, '_visit_%s' % node.__class__.__name__.lower()) self.__visitors[node.__class__] = v return v(node, data) def _visit_expression(self, node, data): return self._visit(node.body, data) # Functions & Accessors def _visit_attribute(self, node, data): obj = self._visit(node.value, data) if hasattr(obj, node.attr): return getattr(obj, node.attr) try: return obj[node.attr] except (KeyError, TypeError): return None def _visit_call(self, node, data): func = self._visit(node.func, data) if func is None: return None args = [self._visit(arg, data) for arg in node.args] kwargs = dict([(kwarg.arg, self._visit(kwarg.value, data)) for kwarg in node.keywords]) return func(*args, **kwargs) def _visit_subscript(self, node, data): obj = self._visit(node.value, data) if isinstance(node.slice, _ast.Slice): try: return obj[self._visit(lower, data): self._visit(upper, data): self._visit(step, data)] except (KeyError, IndexError, TypeError): pass else: index = self._visit(node.slice.value, data) try: return obj[index] except (KeyError, IndexError, TypeError): try: return getattr(obj, index) except (AttributeError, TypeError): pass return None # Operators _OP_MAP = {_ast.Add: operator.add, _ast.And: lambda l, r: l and r, _ast.BitAnd: operator.and_, _ast.BitOr: operator.or_, _ast.Div: operator.truediv, _ast.Eq: operator.eq, _ast.FloorDiv: operator.floordiv, _ast.Gt: operator.gt, _ast.GtE: operator.ge, _ast.Invert: operator.inv, _ast.In: lambda l, r: operator.contains(r, l), _ast.Is: operator.is_, _ast.IsNot: operator.is_not, _ast.Lt: operator.lt, _ast.LtE: operator.le, _ast.Mod: operator.mod, _ast.Mult: operator.mul, _ast.Not: operator.not_, _ast.NotEq: operator.ne, _ast.NotIn: lambda l, r: not operator.contains(r, l), _ast.Or: lambda l, r: l or r, _ast.Pow: operator.pow, _ast.Sub: operator.sub, _ast.UAdd: operator.pos, _ast.USub: operator.neg} def _visit_unaryop(self, node, data): return self._OP_MAP[node.op.__class__](self._visit(node.operand, data)) def _visit_binop(self, node, data): return self._OP_MAP[node.op.__class__](self._visit(node.left, data), self._visit(node.right, data)) def _visit_boolop(self, node, data): return reduce(self._OP_MAP[node.op.__class__], [self._visit(n, data) for n in node.values]) def _visit_compare(self, node, data): result = self._visit(node.left, data) ops = node.ops[:] ops.reverse() for op, rval in zip(ops, node.comparators): result = self._OP_MAP[op.__class__](result, self._visit(rval, data)) return result # Identifiers & Literals def _visit_dict(self, node, data): return dict([(self._visit(k, data), self._visit(v, data)) for k, v in zip(node.keys, node.values)]) def _visit_list(self, node, data): return [self._visit(n, data) for n in node.elts] def _visit_name(self, node, data): val = data.get(node.id) if val is None: val = getattr(__builtin__, node.id, None) return val def _visit_num(self, node, data): return node.n def _visit_str(self, node, data): return node.s def _visit_tuple(self, node, data): return tuple([self._visit(n, data) for n in node.elts])